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Abstract—Transfer learning focuses on the learning scenarios
when the test data from target domains and the training data
from source domains are drawn from similar but different
data distributions with respect to the raw features. Along this
line, some recent studies revealed that the high-level concepts,
such as word clusters, could help model the differences of data
distributions, and thus are more appropriate for classification. In
other words, these methods assume that all the data domains have
the same set of shared concepts, which are used as the bridge
for knowledge transfer. However, in addition to these shared
concepts, each domain may have its own distinct concepts. In light
of this, we systemically analyze the high-level concepts, and pro-
pose a general transfer learning framework based on nonnegative
matrix trifactorization, which allows to explore both shared and
distinct concepts among all the domains simultaneously. Since this
model provides more flexibility in fitting the data, it can lead to
better classification accuracy. Moreover, we propose to regularize
the manifold structure in the target domains to improve the
prediction performances. To solve the proposed optimization
problem, we also develop an iterative algorithm and theoretically
analyze its convergence properties. Finally, extensive experiments
show that the proposed model can outperform the baseline
methods with a significant margin. In particular, we show that
our method works much better for the more challenging tasks
when there are distinct concepts in the data.

Index Terms—Common concept, distinct concept, distribution
mismatch, nonnegative matrix trifactorization, triplex transfer
learning.

I. Introduction

TRADITIONAL classification algorithms often fail to ob-
tain satisfying performance, since in many emerging

Manuscript received March 12, 2013; revised July 4, 2013; accepted
September 1, 2013. A preliminary version of this work has been published
in ACM WSDM 2013 [1]. This work was supported in part by the Na-
tional Natural Science Foundation of China under Grant 61175052, Grant
61203297, Grant 60933004, and Grant 61035003, in part by the National
High-Tech Research and Development Program of China (863 Program)
under Grant 2013AA01A606 and Grant 2012AA011003, and in part by the
National Program on Key Basic Research Project (973 Program) under Grant
2013CB329502. This paper was recommended by Associate Editor H. Wang.

F. Zhuang, C. Du, Q. He, and Z. Shi are with the Key Laboratory of In-
telligent Information Processing, Institute of Computing Technology, Chinese
Academy of Sciences, Beijing 100864, China (e-mail: zhuangfz@ics.ict.ac.cn;
ducy@icc.ict.ac.cn; heq@ics.ict.ac.cn; shizz@ics.ict.ac.cn).

P. Luo is with the Hewlett-Packard Laboratories, Beijing 100084, China
(e-mail: ping.luol@hp.com).

H. Xiong is with the Management Science and Information Systems
Department, Rutgers Business School, Rutgers University, Newark, NJ 08901
USA (e-mail: hxiong@rutgers.edu).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCYB.2013.2281451

real-world applications, new test data usually come from
different data sources with different but semantically-related
distributions. For example, to build a news portal for any of the
Fortune 500 companies, we want to classify the everyday news
about this company into some classes, such as product-related,
financial report, business and industry analysis, stock review,
merger and acquisition related, and so on. The traditional
classification model learned from the news of a company may
not perform well on the news of another company since these
two companies may have different business areas, and thus, the
distributions on the raw words in the two news corpora may be
different. To reduce the manual effort in labeling the training
data in the new domain, leads to a vast amount of studies in
transfer learning (also referred to as domain adaptation, cross-
domain learning) [1]–[14]. It aims at adapting the classification
models trained from the source domains to the target domains
with different data distributions.

Although the source and target domains have different data
distributions in raw word features, many recent studies exploit
the commonality between different domains for knowledge
transfer [5], [9], [11], [12]. In these studies, the high-level
concepts (i.e., word clusters and topics) are utilized with
the observation that different domains may use different
keywords to express the same concept while the association
between the concepts and the document classes may be stable
across domains [11]. In this paper, we refer to the set of
keywords in expressing a concept as the extension of this
concept, in other words, the extension of a concept can be
described as the distribution over words. On the other hand,
we refer to the association between the concepts and the
document classes as the concept intension, which can also
be expressed as the indication to a document class. With
these terminologies, the widely used observation actually says
that the extension of a concept may be different in different
domains while its intension is stable across all the domains.
This basic observation motivates these recent studies to use
the stable concept intension as the bridge for knowledge
transfer.

It is clear that most of the previous works assume that all the
data domains share the same set of concepts with their respec-
tive stable intensions. However, it is not always true since some
distinct concepts may only exist in a text corpus, which are
totally irrelevant to the content of another corpus. For example,
some company is launching the business combination, and it
may apply the keywords consolidation, amalgamation, and so
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TABLE I

Three Kinds of Concepts

TABLE II

Comparison of Models

on. Thus, these distinct concepts in Definition 1 have both
different extensions and different intensions.

Definition 1 (Distinct Concepts): A concept is distinct
when it has both different extension and different intension
with any other concepts.

Additionally, all the shared concepts can be further divided
into two groups, namely, alike concepts and identical concepts,
defined as follows. The alike concepts have the same intension
but different extension with others’. They are actually widely
used in previous works [9]. Meanwhile, there may be some
concepts with both the same intension and the same extension
with others’ as shown in [12]. They are the identical concepts.

Definition 2 (Alike Concepts): A concept is alike to some
other ones when it has the same intension but different
extension with others’.

Definition 3 (Identical Concepts): A concept is identical
with some other ones when it has both the same intension
and the same extension with others’.

These three kinds of concepts are summarized in Table I.
They may all exist in the multiple corpora. However, all the
previous works never consider these three kinds of concepts
together for classification, and only address them separately or
partially. For example, CoCC [5] modeled the identical con-
cepts only. MTrick [9] exploited the associations between word
clusters and document classes for cross-domain classification,
thus actually considered the alike concepts only. DKT [11]
adopted the similar idea with MTrick for cross-language web
page classification. Recently, dual transfer learning (DTL)
[12] was proposed to model alike and identical concepts
together. Therefore, an ideal model should handle the iden-
tical, alike, and distinct concepts simultaneously. Motivated
by this observation, we propose a general framework based
on nonnegative matrix trifactorization (NMTF) techniques,
which consider all these concepts jointly. We believe that
the more flexibility in modeling the data may improve the
classification accuracy. Since our model considers the three
kinds of concepts, we call it Triplex transfer learning (TriTL).
For the sake of clarity, the differences of the four previous
methods and our model are summarized in Table II.

In our previous work [15], we analyzed the commonality
and distinction of the source and target domains, and revealed

that there might also exist some distinct concepts in each of the
data domain. In that paper, we introduced distinct concepts to-
gether with alike and identical concepts into transfer learning,
and developed a TriTL model to exploit them simultaneously
based on nonnegative matrix trifactorization. Along this line,
an iterative algorithm was developed to solve the proposed
matrix factorization problem, and the theoretical analysis of
the algorithm convergence was also provided. Finally, we
conducted extensive experiments to show the superiority of
TriTL over the compared methods. In particular, we showed
that our method works much better in the more challenging
tasks when distinct concepts exist.

Indeed, in this paper, we further exploit the intrinsic struc-
ture of the target domains, and propose to regularize the
manifold structure to enhance the prediction performances of
TriTL. The experiments show the additional improvements
of accuracy compared with TriTL. In summary, we have the
following contributions in this paper.

1) First, we further consider the clustering assumption of
the manifold structure, and propose to regularize triplex
transfer learning (RTriTL) as shown in Section III-C.

2) Second, we theoretically analyze the computational
complexity of the proposed iterative algorithm to show
the efficiency of TriTL as shown in Section III-D.

3) Third, we conduct much more experiments to demon-
strate the effectiveness of TriTL and RTriTL. These
experiments include additional 269 new transfer learn-
ing tasks and three classification problems constructed
from Reuters-21578 data set, compared with the ones
in [15]. It is worth noting that RTriTL can further sig-
nificantly improve the classification accuracy compared
with TriTL as shown in Section IV-C2.

4) Finally, three types of word concepts captured by TriTL
are empirically evaluated, and the experimental results
show that our TriTL model can effectively identify the
shared and distinct concepts for knowledge transfer as
shown in Section IV-F.

Overview. The rest of this paper is organized as follows.
Section II briefly introduces the preliminary knowledge and
math notations. In Section III, we show the proposed model
TriTL and the enhanced version of TriTL. Section IV gives
the experimental results. In Section V, we summarize the
related works. Section VI concludes this paper. Finally, in the
Appendix, we provide the theoretical analysis of the iterative
algorithm.

II. Preliminary Knowledge

In this section, we first give the notations used throughout
this paper, and, then, briefly introduce the nonnegative matrix
trifactorization (NMTF) technique and its notions.

A. Notations

We use calligraphic letters to represent sets, such as D
is used to denote dataset. The data matrices are written in
uppercase, such as X and Y , and X[i,j] indicates the ith row
and jth column element of matrix X. Also, we use R and R+ to



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ZHUANG et al.: TRIPLEX TRANSFER LEARNING 3

TABLE III

Notation and Denotation

denote the set of real numbers and nonnegative real numbers,
respectively. Finally, 1m is used to represent a column vector
with size m, and its elements are all equal to one. For clarity,
the frequently-used notations and denotations are summarized
in Table III.

B. Nonnegative Matrix Factorization

Nonnegative matrix factorization (NMF) technique has been
widely used for text and image classification in the last
decade [16]–[19]. Our model is based on the nonnegative
matrix trifactorization, and the basic formula is

Xm×n = Fm×kSk×cG
�
n×c (1)

where X is the word-document matrix, and m, n, k, c are the
numbers of words, documents, word clusters, and document
classes, respectively, G� is the transposition of G. Concep-
tually, the matrix of F contains the information of word
clusterings. G denotes the document labeling information, and
S denotes the association between word clusters and document
classes [9]. In this paper, each column of F refers to a concept
and each row of G refers to a document. The details on these
matrices will be addressed later.

Here, we also introduce some concepts about NMF, which
are used in Section III and the Appendix.

Definition 4 (Trace of Matrix): Given a data matrix X ∈
R

n×n, the trace of X is computed as

tr(X) =
n∑

i=1

X[i,i]. (2)

In fact, the trace of matrix can also be computed when the
matrix is not a phalanx. Without losing any generality, let
m < n and X ∈ Rm×n, then tr(X) =

∑m
i=1 X[i,i].

Definition 5 (Frobenius Norm of Matrix): Given a data
matrix X ∈ Rm×n, the Frobenius norm of X is computed as

||X|| =

√√√√ m∑
i=1

n∑
j=1

X2
[i,j]. (3)

The properties of the trace and Frobenius norm are as follows:

Property 1: Given a matrix X ∈ Rm×n, then

tr(XT X) = tr(XXT ). (4)

Property 2: Given two matrices X, Y ∈ Rm×n, then

tr(a · X + b · Y ) = a · tr(X) + b · tr(Y ). (5)

Property 3: Given a matrix X ∈ Rm×n, then

||X||2 = tr(XT X) = tr(XXT ). (6)

III. Triplex Transfer Learning

Motivated by the observation on the three kinds of concepts,
we divide F and S into three parts, respectively. Namely,
F = [F 1

m×k1
, F 2

m×k2
, F 3

m×k3
] (k1 + k2 + k3 = k), where F 1 refers

to the word clustering information for the identical concepts,
F 2 refers to the word clustering information for the alike
concepts, and F 3 refers to the word clustering information
for the distinct concepts. Correspondingly, the association S

can be denoted as

S =

⎡⎣ S1
k1×c

S2
k2×c

S3
k3×c

⎤⎦
where S1 refers to the association between the identical
concepts and document classes, S2 refers to the association
between the alike concepts and document classes, and S3 refers
to the association between the distinct concepts and document
classes. Thus, (1) can be rewritten as

Xm×n = Fm×kSk×cG
T
n×c

= [F 1
m×k1

, F 2
m×k2

, F 3
m×k3

]

⎡⎣ S1
k1×c

S2
k2×c

S3
k3×c

⎤⎦ G�
n×c.

(7)

Based on (7), we will formulate the transfer learning frame-
work in the following.

A. Problem Formalization

Suppose, we have s + t data domains, denoted as D = (D1,
· · · , Ds, Ds+1, · · · , Ds+t). Without loss of generality, we assume
the first s domains are source domains with the document
labels, i.e., Dr = {x(r)

i , y
(r)
i }|nr

i=1 (1 ≤ r ≤ s), and the left t

domains are target domains without any label information, i.e.,
Dr = {x(r)

i }|nr

i=1 (s+1 ≤ r ≤ s+t). nr is the number of documents
in data domain Dr. Let X = (X1, · · · , Xs, Xs+1, · · · , Xs+t) be
the word-document co-occurrence matrices of s + t domains,
then the objective function is formulated as follows:

L =
s+t∑
r=1

||Xr − FrSrG
�
r ||2 (8)

where Xr ∈ Rm×nr
+ , Fr ∈ Rm×k

+ , Sr ∈ Rk×c
+ and Gr ∈ Rnr×c

+ .
As described earlier, we divide the word clustering matrix

Fr into three parts Fr = [F 1, F 2
r, F

3
r] (F 1 ∈ Rm×k1

+ , F 2
r ∈

R
m×k2
+ , F 3

r ∈ Rm×k3
+ , k1 + k2 + k3 = k). Here, since F 1 refers

to the word clusterings on the identical concepts, it is shared
in all the domains (note that F 1 does not have the subindex
of r). While F 2

r and F 3
r refers to the word clusterings on
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the alike and distinct concepts, they are different in different
domains (note that F 2

r and F 3
r do have the subindex of r).

Similarly, Sr can be expressed as Sr =

⎡⎣ S1

S2

S3
r

⎤⎦ (S1 ∈ Rk1×c
+ ,

S2 ∈ Rk2×c
+ , S3

r ∈ Rk3×c
+ ). Here, S1 (S2) are the associations

between the identical (alike) concepts and document classes.
Thus, they are shared in all the domains (note that S1 and S2

do not have the subindex of r). However, S3
r represents the

association between distinct concepts and document classes.
Thus, it is domain dependent (note that S3

r does have the
subindex of r).

Therefore, the objective function in (8) can be rewritten as
follows:

L =
s+t∑
r=1

||Xr − FrSrG
�
r ||2

=
s+t∑
r=1

||Xr − [F 1, F 2
r, F

3
r]

⎡⎣ S1

S2

S3
r

⎤⎦ G�
r ||2.

(9)

Considering the constraints to Fr and Gr, we come to the
optimization problem as

min
Fr,Sr,Gr

L

s.t.

m∑
i=1

F 1
[i,j] = 1,

m∑
i=1

F 2
r [i,j] = 1,

m∑
i=1

F 3
r [i,j] = 1,

c∑
j=1

Gr [i,j] = 1.

(10)

Here, the constraints enforce that the sum of the entries in
each column of F equals to one and the sum of the entries
in each row of G equals to one. In other words, each column
of F refers to the word distribution of a concept while each
row of G refers to the probabilities that a document belongs
to different document classes.

B. Solution to TriTL

To solve the optimization problem in (10), we derive an
iterative algorithm. According to the properties of the trace and
Frobenius norm, the minimization of (10) is equal to minimize
the following objective function:

L =
∑s+t

r=1 ||Xr − [F 1, F 2
r, F

3
r]

⎡⎣ S1

S2

S3
r

⎤⎦ G�
r ||2

=
s+t∑
r=1

tr(X�
r Xr − 2 · X�

r [F 1, F 2
r, F

3
r]

⎡⎣ S1

S2

S3
r

⎤⎦ G�
r

+ Gr

⎡⎣ S1

S2

S3
r

⎤⎦�

[F 1, F 2
r, F

3
r]

�[F 1, F 2
r, F

3
r]

⎡⎣ S1

S2

S3
r

⎤⎦ G�
r )

=
s+t∑
r=1

tr(X�
r Xr−2 · X�

r Ar − 2 · X�
r Br − 2 · X�

r Cr

+ GrS
1�

F 1�
Ar + GrS

2�
F 2�

r Br + GrS
3�
r F 3�

r Cr

+ 2 · GrS
1�

F 1�
Br + 2 · GrS

1�
F 1�

Cr + 2 · GrS
2�

F 2�
r Cr)

(11)

s.t.

m∑
i=1

F 1
[i,j] = 1,

m∑
i=1

F 2
r [i,j] = 1

m∑
i=1

F 3
r [i,j] = 1,

c∑
j=1

Gr [i,j] = 1

where Ar = F 1S1G�
r , Br = F 2

rS
2G�

r , Cr = F 3
rS

3
rG

�
r . The

partial differentials of L are as follows:

∂L
∂F 1

=
s+t∑
r=1

(−2 · XrGrS
1�

+ 2 · ArGrS
1�

+ 2 · BrGrS
1�

+ 2 · CrGrS
1�

)

(12)

∂L
∂F 2

r

= − 2 · XrGrS
2�

+ 2 · BrGrS
2�

+ 2 · ArGrS
2�

+ 2 · CrGrS
2�

(13)

∂L
∂F 3

r

= − 2 · XrGrS
3�
r + 2 · CrGrS

3�
r

+ 2 · ArGrS
3�
r + 2 · BrGrS

3�
r

(14)

∂L
∂S1

=
s+t∑
r=1

(−2 · F 1�
XrGr + 2 · F 1�

ArGr

+ 2 · F 1�
BrGr + 2 · F 1�

CrGr)

(15)

∂L
∂S2

=
s+t∑
r=1

(−2 · F 2�
r XrGr + 2 · F 2�

r BrGr

+ 2 · F 2�
r ArGr + 2 · F 2�

r CrGr)

(16)

∂L
∂S3

r

= − 2 · F 3�
r XrGr + 2 · F 3�

r CrGr

+ 2 · F 3�
r ArGr + 2 · F 3�

r BrGr

(17)

∂L
∂Gr

= −2 · X�
r FrSr + 2 · GrS

�
r F�

r FrSr. (18)

Note that when r = {1, · · · , s}, Gr is the true label information,
so we just need to solve Gr when r = {s + 1, · · · , s + t}. Since
L is not concave, it is hard to obtain the global solution by
applying the latest nonlinear optimization techniques. In this
paper, we develop an alternately iterative algorithm, which can
converge to a local optimal solution.

In each round of iteration these matrices are updated as

F 1
[i,j] ←F 1

[i,j]

·

√√√√√√√√√
[

s+t∑
r=1

XrGrS
1�

][i,j]

[
s+t∑
r=1

(ArGrS
1�

+ BrGrS
1�

+ CrGrS
1�

)][i,j]

(19)

F 2
r [i,j] ← F 2

r [i,j] ·
√√√√ [XrGrS2�][i,j]

[BrGrS2� + ArGrS2� + CrGrS2�][i,j]

(20)

F 3
r [i,j] ← F 3

r [i,j] ·
√√√√ [XrGrS3�

r ][i,j]

[CrGrS3�
r + ArGrS3�

r + BrGrS3�
r ][i,j]

(21)
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S1
[i,j] ←S1

[i,j]

·

√√√√√√√√√
[

s+t∑
r=1

F 1�
XrGr][i,j]

[
s+t∑
r=1

(F 1�
ArGr + F 1�

BrGr + F 1�
CrGr)][i,j]

(22)

S2
[i,j] ←S2

[i,j]

·

√√√√√√√√√
[

s+t∑
r=1

F 2�
r XrGr][i,j]

[
s+t∑
r=1

(F 2�
r BrGr + F 2�

r ArGr + F 2�
r CrGr))][i,j]

(23)

S3
r [i,j] ← S3

r [i,j] ·
√√√√ [F 3�

r XrGr][i,j]

[F 3�
r CrGr + F 3�

r ArGr + F 3�
r BrGr][i,j]

(24)

Gr [i,j] ← Gr [i,j] ·
√

[X�
r FrSr][i,j]

[GrS�
r F�

r FrSr][i,j]
. (25)

After the calculation of each round of iteration, F 1, F 2
r,

F 3
r, Gr are normalized using (26) to satisfy the equality

constraints

F 1
[i,j] ← F 1

[i,j]
m∑
i=1

F 1
[i,j]

, F 2
r [i,j] ← F 2

r [i,j]
m∑
i=1

F 2
r [i,j]

F 3
r [i,j] ← F 3

r [i,j]
m∑
i=1

F 3
r [i,j]

, Gr [i,j] ← Gr [i,j]
c∑

j=1

Gr [i,j]

.

(26)

The detailed procedure of this iterative algorithm is described
in Algorithm 1. In this algorithm, the data matrices are
normalized such that Xr [i,j]=

Xr [i,j]∑m
i=1 Xr [i,j]

, Gr (1 ≤ r ≤ s) are
assigned as the true label information. Specifically, Gr [i,u] = 1
if the ith document belongs to the uth class, else Gr [i,v] = 0
(v �= u). F 1 and F 2

r are initialized as the word clustering
results by PLSA [20]. Specifically, we combine all the data
from source and target domains, and conduct the PLSA imple-
mented by Matlab.1 We set the number of topics as (k1 + k2),
and obtain the word clustering information W ∈ Rm×(k1+k2)

+ .
W is divided into two parts W = [W1, W2] (W1 ∈ Rm×k1

+ ,
W2 ∈ R

m×k2
+ ), then F 1 is initialized as W1 and F 2

r is
assigned as W2. Finally, F 3

r is randomly initialized, and
F 3

r [i,j] = F 3
r [i,j]∑m

i=1 F 3
r [i,j]

. After the computation of Algorithm 1, we
can conduct the classification of target domain data according
to Gr (s + 1 ≤ r ≤ s + t). The convergence analysis of
Algorithm 1 can be referred in the Appendix.

1http://www.kyb.tuebingen.mpg.de/bs/people/pgehler/code /index.html.

Algorithm 1 Triplex Transfer Learning (TriTL) Algorithm

Input: The source domains Dr = {x(r)
i , y

(r)
i }|nr

i=1 (1 ≤ r ≤ s),
target domains Dr = {x(r)

i }|nr

i=1 (s + 1 ≤ r ≤ s + t), and the
corresponding data matrices X1, · · · , Xs, Xs+1, · · · , Xs+t . The
data matrices are normalized such that Xr [i,j] = Xr [i,j]∑m

i=1 Xr [i,j]
, Gr

(1 ≤ r ≤ s) are assigned as the true label information. The
parameters k1, k2, k3, and the number of iterations T .
Output: F 1, F 2

r, F 3
r, S1, S2, S3

r (1 ≤ r ≤ s + t), and Gr

(s + 1 ≤ r ≤ s + t).

1) Initialization: The initializations of F 1(0)
, F 2

r
(0)

, F 3
r
(0)

are detailed in Section III-B; S1(0)
, S2(0)

, S3
r
(0)

are
randomly assigned, and Gr

(0) (s + 1 ≤ r ≤ s + t)
are initialized as the probabilistic output by supervised
learning models, such as Logistic Regression (LR) [21]
in the experiments.

2) k := 1.
3) Update F 1(k)

according to (19);
4) For r := 1 → s + t

Update F 2
r
(k)

according to (20) and F 3
r
(k)

accord-
ing to (21);

5) end
6) Update S1(k)

according to (22) and S2(k)
according

to (23);
7) For r := 1 → s + t

Update S3
r
(k)

according to (24);

8) end
9) For r := s + 1 → s + t

Update Gr
(k) according to (25);

10) end
11) Normalize F 1(k)

, F 2
r
(k)

, F 3
r
(k)

, Gr
(k) according to (26);

12) k := k + 1. If k < T , then turn to Step 3.
13) Output F 1(k)

, F 2
r
(k)

, F 3
r
(k)

, S1(k)
, S2(k)

, S3
r
(k)

and Gr
(k).

C. Regularized TriTL

In this section, we further consider the clustering assumption
that neighboring samples in geometric structure may share the
similar class labels. In other word, the predicted labels of any
two examples in target domains are required to be similar when
they are neighbors. We hope the regularization of manifold
structure in target domains would lead to the performance
improvement.

Let Mr be the adjacence matrix of the documents in target
domain Dr (s + 1 ≤ r ≤ s + t)

Mr [i,j] =

{
1, if xj belongs to the N nearest neighbors of xi,

0, otherwise
(27)

where xi is the column vector. The similarity degree between
xi and xj can be calculated by cosine measure

cos(xi, xj) =
xi

�xj√
xi

�xi · √
xj

�xj

. (28)
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Let Dr = diag(
∑

j Mr [i,j]) and Lr = Dr −Mr be the Laplacian
matrix, then incorporating the regularized manifold structure
to (10), the optimization problem becomes

L =
s+t∑
r=1

||Xr−FrSrG
�
r ||2 +

γ

2

s+t∑
r=s+1

∑
i,j

Mr [i,j]||Gr [i,·]−Gr [j,·]||2,

=
s+t∑
r=1

||Xr − FrSrG
�
r ||2 + γ ·

s+t∑
r=s+1

tr(G�
r LrGr),

s.t.

m∑
i=1

F 1
[i,j] = 1,

m∑
i=1

F 2
r [i,j] = 1,

m∑
i=1

F 3
r [i,j] = 1,

c∑
j=1

Gr [i,j] = 1

(29)
where Gr [i,·] denotes the ith row of Gr. Obviously, the regu-
larization item only depends on the variable Gr, thus we can
easily acquire the solution of optimization problem in (29)
based on Algorithm 1. Specifically, the update formula of Gr

in (25) is replaced as

Gr [i,j] ← Gr [i,j] ·
√

[X�
r FrSr][i,j]

[GrS�
r F�

r FrSr + LrGr][i,j]
. (30)

For succinctness, this regularized triplex transfer learning
algorithm is denoted as RTriTL.

D. Computational Complexity of the Iterative Algorithm

To show the efficiency of the proposed iterative algorithm in
Algorithm 1, here, we analyze its computational complexity.
Let n =

∑
r nr be the total number of documents from

all source and target domains, k = k1 + k2 + k3 be the
total number of concepts, including the numbers of identical,
alike and distinct concepts, for each round of iteration in
Algorithm 1, the computational complexity of (19) to calculate
F 1 is O(7mnc + mkc(s + t) + 4mk1c(s + t) + mk1). Generally,
k � m, c � m, k � n and c � n, so the computational
complexity of (19) can be rewritten as O(mnc). Similarly, the
computational complexities of (20), (21), (22), (23), (24),
and (25) are, respectively, O(mnrc), O(mnrc), O(mnc+mnk1),
O(mnc + mnk2), O(mnrc + mnk3), and O(mnrc + mnrk).

Given the number of iterations T , the maximal computa-
tional intensity is O(Tmnc + Tmnk), which is linear to the
number of words and documents. In fact, the matrixes are
always very sparse, and we implement the iterative algorithm
by sparse matrix computation in Matlab, thus the computa-
tional intensity can be dramatically reduced.2 Note that the
regularization item in RTriTL almost does not increase the
computation complexity. Therefore, the theoretical analysis
guarantees the efficiency of the proposed iterative algorithm.

2Experimental results show that the iterative algorithm can finish our task
in about 15 seconds under the default setting of parameters. There are about
8,000 words and 4000 documents in each task. The configuration of computing
platform: Intel Core i7-3770 CPU 3.4GHz, RAM 4.0GB.

IV. Experimental Evaluation

In this section, we systemically demonstrate the effective-
ness of the proposed transfer learning framework TriTL and
RTriTL. In the experiments, we only focus on binary text
classification and there are only one source domain and one
target domain, i.e., s = 1 and t = 1. Note that TriTL is
a general model, which can handle multiclass classification
problems and multiple source and target domains, i.e., s > 1
and t > 1.

A. Data Preparation

20Newsgroups3 is one of the benchmark data sets for
evaluating transfer learning algorithms, which is widely used
in previous works [1], [3], [22], [23]. This corpus has ap-
proximately 20 000 newsgroup documents, which are evenly
divided into 20 subcategories. Some similar subcategories
are grouped into a top category, e.g., the four subcategories
sci.crypt, sci.electronics, sci.med, and sci.space belong to the
top category sci. The four top categories and their subcate-
gories are depicted in Table IV.

Firstly, we construct the transfer learning tasks using the
approach in [9]. For example, for the dataset rec versus sci,
we randomly select a subcategory from rec as positive class
and a subcategory from sci as negative class to produce the
source domain. The target domain is similarly constructed,
thus in totally 144 (P2

4 · P2
4 ) classification tasks are generated

for dataset rec versus sci. However, in this traditional setting,
the source and target domains are both drawn from the
same top categories, thus they may tend to share all the
concepts.

Secondly, to validate our model TriTL can effectively ex-
ploit the distinct concepts, we further construct another type
of classification tasks. For example, for the classification task
generated from rec versus sci from the above approach, we
replace one subcategory from the target domain as another
subcategory from the top category comp or talk. In this new
type of classification tasks, the source and target domains are
not drawn from the same top categories, thus they would have
their own distinct concepts.

In this way, we can construct additional 384 (144 ÷ 3 × 8)
classification tasks. Among all these 384 tasks, we first run
the supervised learning model logistic regression (LR) [21] on
each of them, and then select the 334 ones whose accuracies
from LR are higher than 50%.4

In summary, we have 144 traditional transfer learning tasks
and 334 new transfer learning problems generated from the
20Newsgroups dataset.

The dataset Reuters-21578,5 which has three top categories
orgs, people, and place (Each top category also has several
subcategories), is also adopted to validate our algorithm in
the experiments. We directly use the three classification tasks
constructed by Gao et al. [3].

3http://people.csail.mit.edu/jrennie/20Newsgroups/.
4In this paper, we don’t consider the classification tasks whose accuracies

from LR are lower than 50%, since they are much more challenging and
vulnerable to negative transfer.

5http://www.daviddlewis.com/resources/testcollections/reuters21578/
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Fig. 1. Performance comparison among LR, SVM, TSVM, CoCC, DTL, MTrick and TriTL, RTriTL on dataset rec versus sci. (a) RTriTL, TriTL versus LR,
SVM, TSVM. (b) RTriTL, TriTL versus CoCC, DTL, MTrick.

TABLE IV

Top Categories and Their Subcategories

B. Experimental Setting

Compared algorithms: We compare our models TriTL,
RTriTL with some state-of-the-art baselines, including:

1) the supervised algorithms: LR [21], support vector ma-
chine (SVM) [24];

2) the semisupervised algorithm: Transductive support vec-
tor machine (TSVM) [25];

3) the cross-domain methods: Coclustering-based classifi-
cation (CoCC) [5], MTrick [9], and dual transfer learn-
ing [12].

Parameter setting: In TriTL, we set k1 = 20, k2 = 20,
k3 = 10 and T = 100. In RTriTL, the parameters k1, k2 and k3

are set the same as the ones in TriTL, the number of nearest
neighbors N = 50, the tradeoff parameter γ = 1000, and
T = 200 to achieve better convergence quality. The baseline
methods LR is implemented by Matlab,6 SVM and TSVM are
given by SVM light .7 The parameters of CoCC, MTrick, and
DTL are set as the default ones in their original papers, except
that for DTL, we normalize the data matrix the same as this
paper, i.e., X[i,j] = X[i,j]∑m

i=1 X[i,j]
, rather than X[i,j] = X[i,j]∑m

i=1

∑n
j=1 X[i,j]

in their paper. Preliminary tests show that, this slight change
of normalization results in significant improvement of DTL.

6http://research.microsoft.com/∼minka/papers/logreg/.
7http://svmlight.joachims.org/.

We use the classification accuracy as the evaluation metric

accuracy =
|{d|d ∈ D ∧ f (d) = y}|

n
(31)

where y is the true label of document d, n is number of
documents, and the function f (d) gives d a prediction label.

C. Experimental Results

1) Comparison on the Traditional Transfer Learning Tasks:
We compare TriTL, RTriTL with LR, SVM, TSVM, CoCC,
DTL, and MTrick on the dataset rec versus sci, and all the
results of the 144 classification tasks are recorded in Fig. 1 and
Table V. In Fig. 1, the 144 tasks are sorted by the increasing
order of the performance of LR. The lower accuracy of LR
indicates that it is more difficult to transfer the knowledge from
source domain to target domain. Also, these classification tasks
are separated into two parts, the left side of black dotted line
in Fig. 1 represents the problems with accuracy of LR lower
than 55%, while the right higher than 55%. Table V lists the
corresponding average performance.

From these results, we have the following findings.

a) TriTL is significantly better than the supervised learn-
ing algorithms LR and SVM, and the semisupervised
method TSVM. This show that the traditional learning
algorithms may fail in the transfer learning tasks.

b) TriTL significantly outperforms all the compared trans-
fer learning algorithms CoCC, MTrick, and DTL with
the statistical test. In Table V, TriTL achieves the best
results in term of the average performances, no matter
the classification tasks with accuracy of LR lower or
higher than 55%. This improvement might be due to
the synthesized effectiveness in modeling all the three
concepts. When the accuracy of LR is lower than 55%,
the degree of distribution difference between source and
target domains might be large. Thus, modeling the dis-
tinct concepts in TriTL may improve the performance.
On the other hand, when the accuracy of LR is higher
than 55%, the data distributions of the source and target
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TABLE V

Average Performances (%) on 144 Traditional Transfer Learning Tasks and 334 New Transfer Learning Ones

TABLE VI

Performances (%) on Three Transfer Learning Tasks from Reuters-21578 Dataset

domains might be similar. Thus, modeling the identical
and alike concepts may work. Therefore, our model
TriTL is much flexible under different situations.

c) When the accuracy of LR is lower than 55%, MTrick is
better than DTL, and DTL is better than CoCC, which
coincide with our expectation. In these difficult tasks,
the degree of distribution difference between source
and target domains might be large. There might not be
any identical concepts shared in the source and target
domains. Thus, modeling the identical concepts in DTL
and CoCC might deteriorate the performance.

d) When the accuracy of LR is higher than 55%, the
compared transfer learning algorithms perform similarly,
and they all outperform the traditional learning methods.
This time the transfer learning algorithms all consider
the identical or alike concepts, since the degree of dis-
tribution difference between source and target domains
might be small.

e) RTriTL gains the performance improvement against
TriTL in terms of the average accuracy, which indicates
the positive effect of the regularized manifold structure
in the target domains.

2) Comparison on the New Type of Transfer Learning
Tasks: To further validate the effectiveness of TriTL and
RTriTL, we construct the other 334 transfer learning tasks in
which the distinct concepts may exist. The average accuracy
values of these 334 tasks using all the methods are given in
Table V. In this table, we also divide these tasks into two
groups, whose accuracies from LR are lower or higher than
55%. From this table, it can be found that TriTL, RTriTL
once more obtain the best results. MTrick is better than DTL,
and DTL outperforms CoCC when the average accuracy of
LR is lower than 55%, which are consistent to the analysis in
Section IV-C1.

3) Comparison on Reuters-21578: The Reuters-21578
dataset is also used to verify the superiority of TriTL and
RTriTL, and we directly adopt the constructed transfer learning
tasks from Gao et al. [3]. All the results of each task and their
average performances are listed in Table VI. The results show
that TriTL and RTriTL can also perform very well on these

three tasks, and they outperform all the baselines in terms of
average accuracy.

D. Parameter Sensitivity

Here, we investigate the parameter sensitivity of our model
TriTL. There are three parameters in TriTL, including the
number of identical concepts k1, the number of alike concepts
k2, and the number of distinct concepts k3. To verify that
TriTL is not sensitive to the parameter setting, we relax the
sampling ranges of these three parameters. Specifically, after
some preliminary test, we bound the parameters k1 ∈ [15, 25],
k2 ∈ [15, 25], and k3 ∈ [5, 15], and evaluate them on ten
randomly selected tasks from the 144 classification problems
of rec versus sci. We randomly sample ten combinations
of parameters, and all the results are shown in Table VII.
The 12th and 13th rows, respectively, represent the average
accuracy and variance of each tasks under the ten combinations
of parameters. The last row is the result using the default
parameters adopted in this paper.

It is obvious that in Table VII, the mean performance of
the ten combinations of parameters for each task is almost the
same as the one using the default parameters, and the variance
is very small. These results show that TriTL is not sensitive
to the parameter setting when they are sampled from some
predefined bounds.

In RTriTL, we adopt the same parameters of k1, k2, and
k3 as in TriTL, i.e., k1 = 20, k2 = 20, and k3 = 10. In the
following, we study the parameter sensitivity of the number
of nearest neighbors N and the tradeoff factor γ to RTriTL.
We randomly select 24 tasks from the dataset rec versus sci
and 65 ones (whose accuracies from LR are lower than 55%)
from the new transfer learning problems to, respectively, study
the parameter affection on N and γ . The average results over
all selected problems under different parameter settings are
reported in Fig. 2. According to these results, we set N = 50
and γ = 1000 as the default values in this paper to get stable
and outstanding performance.

E. Algorithm Convergence

In this section, we also empirically check the convergence
of the iterative algorithm to TriTL. We randomly choose six
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TABLE VII

Parameter Effect for Performance (%) of Algorithm TriTL

Fig. 2. Parameter affection of N and γ to RTriTL (k1 = 20, k2 = 20,
k3 = 10). (a) N (γ = 1000). (b) γ (N = 50).

tasks from the dataset rec versus sci, and the results are shown
in Fig. 3. In these figures, the x-axis denotes the number of
iterations, and the left and right y-axis denotes the prediction
accuracy and the objective value in (10), respectively. Both
prediction accuracy and objective value can converge within
100 iterations, and the value of objective function in (10)
decreases along with the iterating process, which coincides
with the theoretic analysis.

F. Visualization of Word Clusters

To show the effectiveness of TriTL, in this section, we also
empirically demonstrate TriTL can simultaneously capture the
distinct, alike, and identical concepts. In details, τ keywords
(e.g., τ = 20 is adopted in the experiments.) are selected to ex-
press each topic according to the word clustering information
F . Table VIII lists some word clusters from the classification
task, i.e., source domain: rec.autos versus sci.space, and target
domain: rec.sport.hockey versus talk.politics. mideast. From
these results, it can be indicated that TriTL can capture
the identical and alike concepts applying the same/different
keywords about the same topic recreation among source and
target domains (From the first row to sixth row in Table VIII).
Furthermore, TriTL can effectively capture the distinct con-
cepts using different keywords (From the seventh row to tenth
row in Table VIII), e.g., the keywords planet, mars, jpl, nasa
describe the topic science about space belonging to the source
domain, while the keywords israelis, istanbul, gaza describe
the topic politics about mideast belonging to the target domain.

V. Related Works

In this section, we summarize the related works of transfer
learning, which has aroused large amounts of interest and
research in recent years. Here, we group the previous works
of transfer learning into three categories, i.e., feature-based,
instant weighing-based, and model combination-based transfer
learning.

Feature-based methods can further be divided into two
categories, i.e., feature selection and feature mapping. Feature
selection-based methods are to identify the common features
(at the level of raw words) between source and target do-
mains, which are useful for transfer learning [5], [26], [27].
Jiang et al. [26] argued that the features highly related to class
labels should be assigned to large weights in the learnt model,
thus they developed a two-step feature selection framework
for domain adaptation. They first selected the general features
to build a general classifier, and then considered the unlabeled
target domain to select specific features for training target clas-
sifier. Uguroglu et al. [27] presented a novel method to identify
variant and invariant features between two datasets for transfer
learning. Feature space mapping-based methods are to map
the original high-dimensional features into a low-dimensional
feature space, under which the source and target domains
comply with the same data distribution [13], [28]–[32].
Pan et al. [28] proposed a dimensionality reduction approach
to find out this latent feature space, in which supervised learn-
ing algorithms can be applied to train classification models.
Si et al. [31] presented the cross-domain discriminative Hes-
sian Eigenmaps to find a subspace, in which the distributions
of training and test data are similar; also both the local
geometry and the discriminative information can be well
passed from the training domain to test domain. Gu et al. [29]
learnt the shared subspace among multiple domains for clus-
tering and transductive transfer classification. In their problem
formulation, all the domains have the same cluster centroid
in the shared subspace. The label information can also be
injected for classification tasks in this method. Tian et al. [13]
proposed a sparse transfer learning algorithm, in which both
the user’s search intention and sample distribution knowl-
edge are considered, for interactive video search reranking.
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Fig. 3. Number of iterations versus the Performance of TriTL and Objective Value. (a) Problem 1. (b) Problem 2. (c) Problem 3. (d) Problem 4.
(e) Problem 5. (f) Problem 6.

TABLE VIII

Identical, Alike, and Distinct Concepts Captured by TriTL (Source Domain (r = 1): rec.autos versus sci.space, Target Domain (r = 2):

rec.sport.hockey versus talk.politics.mideast)

Si et al. [32] developed a transfer subspace learning frame-
work, which can be applicable to various dimensionality
reduction algorithms and minimize the Bregman divergence
between the distribution of training data and testing data in the
selected subspace. Gupta et al. [33] proposed a nonnegative
shared subspace learning for social media retrieval. However,
their algorithm does not consider the alike concepts and can
not be directly used for transfer classification.

Instance weighting-based approaches reweight the instances
in source domains according to the similarity measure on how
they are close to the data in the target domain. Specifically,
the weight of an instance is increased if it is close to the data
in the target domain, otherwise the weight is decreased [23],
[34], [35]. Dai et al. [23] extended boosting-style learning

algorithm to cross-domain learning, in which the training
instances with different distribution from the target domain
are less weighted for data sampling, while the training in-
stances with the similar distribution to the target domain are
more weighted. Jiang et al. [34] proposed a general instance
weighting framework, which has been validated to work well
on NLP tasks. Wan et al. [35] first aligned the feature spaces
in both domains utilizing some online translation service,
and then proposed an iterative feature and instance weighting
(Bi-Weighting) method for cross-language text classification.

Model combination-based methods aim at giving different
weights to the classification models in an ensemble [3], [36].
Gao et al. [3] proposed a dynamic model weighting method
for each test example according to the similarity between the
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model and the local structure of the test example in the target
domain. Dredze [36] developed a new multidomain online
learning framework based on parameter combination from
multiple classifiers for a new target domain.

However, there has not yet transfer learning algorithm sys-
temically analyzes the commonalities and speciality between
source and target domains, and models them together. This pa-
per belongs to the feature-based methods, and simultaneously
models the three commonalities and specific characteristic
between source and target domains. Moreover, we design a
new type of experiments to validate the effectiveness of our
model.

VI. Conclusion

In this paper, we systemically study the problem of transfer
learning when there are three types of concepts, namely, iden-
tical, alike, and distinct concepts, among the source and target
domains. By considering them altogether, we propose a gen-
eral model TriTL based on nonnegative matrix trifactorization.
Then, an alternately iterative algorithm is developed to solve
the proposed optimization problem. Moreover, we propose to
regularize the manifold structure in target domains to further
improve the prediction performances. Finally, we construct
two types of transfer learning tasks. The experimental results
show that the proposed algorithms TriTL and RTriTl could
significantly outperform the compared methods under various
situations of the source and target domains.

Appendix

To study the convergence of update rules in (19)–(26), we
first check the convergence of F 1 when the rest parameters
are fixed. According to (10), we formulate the optimization
problem with constraints as the following Lagrangian function

G(F 1) =
s+t∑
r=1

||Xr − FrSrG
�
r ||2

+ tr[λ(F 1�
1m − 1k1 )(F 1�

1m − 1k1 )�]

(32)

where λ ∈ Rk1×k1 is a diagonal matrix. Omitting the items,
which are independent of F 1, (32) becomes

G(F 1) =
s+t∑
r=1

tr(−2 · X�
r F 1S1G�

r + GrS
1�

F 1�
Ar

+ 2 · GrS
1�

F 1�
Br + 2 · GrS

1�
F 1�

Cr)

+ tr[λ(F 1�
1m1�

mF 1 − 2 · 1k1 1�
mF 1)].

(33)

Then, the differential is

∂G
∂F 1

=
s+t∑
r=1

(−2 · XrGrS
1�

+ 2 · ArGrS
1�

+ 2 · BrGrS
1�

+ 2 · CrGrS
1�

) + 2 · 1m(1m
�F 1 − 1k1

�)λ.
(34)

Lemma 1: Using the update rule (35), (33) will
monotonously decrease

F 1
[i,j] ← F 1

[i,j] ·

√√√√√√√√√
[

s+t∑
r=1

XrGrS
1�

+ 1m1k1
�λ][i,j]

[
s+t∑
r=1

Dr + 1m1m
�F 1λ][i,j]

(35)

where Dr = ArGrS
1�

+ BrGrS
1�

+ CrGrS
1�

.
Proof: To prove Lemma 1 we describe the definition of

auxiliary function [37] as follows.
Definition 6 (Auxiliary function): A function Q(Y, Ỹ ) is

called an auxiliary function of T (Y ) if it satisfies

Q(Y, Ỹ ) ≥ T (Y ),Q(Y, Y ) = T (Y ) (36)

for any Y , Ỹ .
Then, define

Y (t+1) = arg minYQ(Y, Y (t)). (37)

Through this definition

T (Y (t)) =Q(Y (t), Y (t)) ≥ Q(Y (t+1), Y (t)) ≥ T (Y (t+1)). (38)

It means that the minimizing of the auxiliary function of
Q(Y, Y (t)) (Y (t) is fixed) has the effect to decrease the function
of T .

Now, we can construct the auxiliary function of G as

Q(F 1, F 1
′
) =

m∑
i=1

k1∑
j=1

{−2 · (
s+t∑
r=1

XrGrS
1�

)[i,j]F
1

′
[i,j](1 + log

F 1
[i,j]

F 1
′
[i,j]

)

−2 · (1m1k1
�λ)[i,j]F

1
′
[i,j](1 + log

F 1
[i,j]

F 1
′
[i,j]

)

+(
s+t∑
r=1

Ar

′
GrS

1�
+ 1m1m

�F 1
′
λ)[i,j]

F 1
[i,j]F

1
[i,j]

F 1
′
[i,j]

+[
s+t∑
r=1

(BrGrS
1�

+ CrGrS
1�

)][i,j](F
1

′
[i,j] +

F 1
[i,j]F

1
[i,j]

F 1
′
[i,j]

)}

where Ar

′
= F 1

′
S1G�

r . Obviously, when F 1 = F 1
′

the equality
Q(F 1, F 1

′
) = G(F 1) holds. Also, we can prove the inequality

Q(F 1, F 1
′
) ≥ G(F 1) holds using the similar proof approach

in [38]. Then, while fixing F 1
′
, we minimize Q(F 1, F 1

′
). The

differential of Q(F 1, F 1
′
) is

∂Q(F 1, F 1
′
)

∂F 1
[i,j]

=

−2 · (
s+t∑
r=1

XrGrS
1�

)[i,j]
F 1

′
[i,j]

F 1
[i,j]

−2 · (1m1k1
�λ)[i,j]

F 1
′
[i,j]

F 1
[i,j]
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+2 · (
s+t∑
r=1

Ar

′
GrS

1�
+ 1m1m

�F 1
′
λ)[i,j]

F 1
[i,j]

F 1
′
[i,j]

+2 · [
s+t∑
r=1

(BrGrS
1�

+ CrGrS
1�

)][i,j]
F 1

[i,j]

F 1
′
[i,j]

.

Let ∂Q(F 1,F 1
′
)

∂F 1
[i,j]

= 0, we can obtain (35). Thus, the up-

date rule (35) decreases the values of G(F 1). Then,
Lemma 1 holds.

The only obstacle left is the calculation of the Lagrangian
multipliers λ. Actually, the role of λ in this problem is to
drive the solution to satisfy the constrained condition that the
sum of the values in each column of F 1 is one. Here, we
adopt the normalization technology in [39] and [9] to satisfy
the constrains regardless of λ. Specifically, in each iteration,
we use (26) to normalize F 1. After normalization, 1m1k1

�λ

is equal to 1m1m
�F 1λ which are both constants; therefore,

the effect of (19) and (26) can be approximately equivalent to
(35) when only considering the convergence. In our solution,
we adopt the approximate update rule of (19) by omitting
the items that depends on λ in (35). We can use the similar
method to analyze the convergence of the update rules for F 2

r,
F 3

r, S1, S2, S3
r (1 ≤ r ≤ s + t), and Gr (s + 1 ≤ r ≤ s + t)

in (20), (21), (22), (23), (24), (25), and (26), respectively.
Theorem 1 (Convergence): After each round of iteration in

Algorithm 1, the objective function in (10) will not increase.
According to the lemmas for the convergence analysis on the
update rules for F 1, F 2

r, F 3
r, S1, S2, S3

r (1 ≤ r ≤ s + t), Gr

(s + 1 ≤ r ≤ s + t), and the multiplicative update rules [37],
each update step in Algorithm 1 will not increase (10) and
the objective has a lower bounded by zero, which guarantee
the convergence. Thus, the above theorem holds.
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